Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic photoluminescence lifetime imaging of multicrystalline silicon bricks

Identifieur interne : 001E08 ( Main/Repository ); précédent : 001E07; suivant : 001E09

Dynamic photoluminescence lifetime imaging of multicrystalline silicon bricks

Auteurs : RBID : Pascal:12-0449419

Descripteurs français

English descriptors

Abstract

We apply the approach of dynamic photoluminescence lifetime imaging to a multicrystalline silicon brick. The dynamic approach allows the calibration-free determination of the bulk carrier lifetime of silicon bricks prior to wafer sawing. Using an indium gallium arsenide camera, we determine the bulk lifetime from the time-dependent luminescence emission for a modulated optical excitation. A ratio, including four photoluminescence images, acquired at different times during the modulated excitation, is calculated and found to depend on the camera integration time and the bulk lifetime. We demonstrate that the exact value of the surface recombination and the thickness of the brick are not required for the determination of the bulk carrier lifetime with the dynamic photoluminescence technique. The bulk lifetime is obtained locally by comparing the experimentally determined ratio with the simulated ratio for each image pixel. Since we are investigating the ratio of photoluminescence images containing information of the time dependence of the excess carriers, the doping-dependent luminescence emission has not to be corrected for the typical height-dependent doping variations. Therefore, the dynamic photoluminescence lifetime imaging technique is well suited for the investigation of bricks.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0449419

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dynamic photoluminescence lifetime imaging of multicrystalline silicon bricks</title>
<author>
<name sortKey="Herlufsen, Sandra" uniqKey="Herlufsen S">Sandra Herlufsen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
<wicri:noRegion>Am Ohrberg 1</wicri:noRegion>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bothe, Karsten" uniqKey="Bothe K">Karsten Bothe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
<wicri:noRegion>Am Ohrberg 1</wicri:noRegion>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Jan" uniqKey="Schmidt J">Jan Schmidt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
<wicri:noRegion>Am Ohrberg 1</wicri:noRegion>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Solid-State Physics, Leibniz University of Hanover (LUH), Appelstrasse 2</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brendel, Rolf" uniqKey="Brendel R">Rolf Brendel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
<wicri:noRegion>Am Ohrberg 1</wicri:noRegion>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Solid-State Physics, Leibniz University of Hanover (LUH), Appelstrasse 2</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Siegmund, Sebastian" uniqKey="Siegmund S">Sebastian Siegmund</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Schott Solar Wafer GmbH, Fab Jena 2, Otto-Schott-Strasse 13</s1>
<s2>07745 Jena</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>Otto-Schott-Strasse 13</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0449419</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0449419 INIST</idno>
<idno type="RBID">Pascal:12-0449419</idno>
<idno type="wicri:Area/Main/Corpus">001551</idno>
<idno type="wicri:Area/Main/Repository">001E08</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calibration</term>
<term>Carrier lifetime</term>
<term>Charge carrier recombination</term>
<term>Doping</term>
<term>Durability</term>
<term>Imaging</term>
<term>Luminescence</term>
<term>Photoluminescence</term>
<term>Sawing</term>
<term>Silicon</term>
<term>Surface recombination</term>
<term>Thickness</term>
<term>Time dependence</term>
<term>Wafers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Formation image</term>
<term>Etalonnage</term>
<term>Durée vie porteur charge</term>
<term>Pastille électronique</term>
<term>Sciage</term>
<term>Durabilité</term>
<term>Dépendance temps</term>
<term>Luminescence</term>
<term>Recombinaison superficielle</term>
<term>Recombinaison porteur charge</term>
<term>Epaisseur</term>
<term>Dopage</term>
<term>Silicium</term>
<term>7855A</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We apply the approach of dynamic photoluminescence lifetime imaging to a multicrystalline silicon brick. The dynamic approach allows the calibration-free determination of the bulk carrier lifetime of silicon bricks prior to wafer sawing. Using an indium gallium arsenide camera, we determine the bulk lifetime from the time-dependent luminescence emission for a modulated optical excitation. A ratio, including four photoluminescence images, acquired at different times during the modulated excitation, is calculated and found to depend on the camera integration time and the bulk lifetime. We demonstrate that the exact value of the surface recombination and the thickness of the brick are not required for the determination of the bulk carrier lifetime with the dynamic photoluminescence technique. The bulk lifetime is obtained locally by comparing the experimentally determined ratio with the simulated ratio for each image pixel. Since we are investigating the ratio of photoluminescence images containing information of the time dependence of the excess carriers, the doping-dependent luminescence emission has not to be corrected for the typical height-dependent doping variations. Therefore, the dynamic photoluminescence lifetime imaging technique is well suited for the investigation of bricks.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>106</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dynamic photoluminescence lifetime imaging of multicrystalline silicon bricks</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 2nd International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2012)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HERLUFSEN (Sandra)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOTHE (Karsten)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHMIDT (Jan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BRENDEL (Rolf)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SIEGMUND (Sebastian)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GORDON (Ivan)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Solid-State Physics, Leibniz University of Hanover (LUH), Appelstrasse 2</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Schott Solar Wafer GmbH, Fab Jena 2, Otto-Schott-Strasse 13</s1>
<s2>07745 Jena</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>42-46</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000502018300090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0449419</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We apply the approach of dynamic photoluminescence lifetime imaging to a multicrystalline silicon brick. The dynamic approach allows the calibration-free determination of the bulk carrier lifetime of silicon bricks prior to wafer sawing. Using an indium gallium arsenide camera, we determine the bulk lifetime from the time-dependent luminescence emission for a modulated optical excitation. A ratio, including four photoluminescence images, acquired at different times during the modulated excitation, is calculated and found to depend on the camera integration time and the bulk lifetime. We demonstrate that the exact value of the surface recombination and the thickness of the brick are not required for the determination of the bulk carrier lifetime with the dynamic photoluminescence technique. The bulk lifetime is obtained locally by comparing the experimentally determined ratio with the simulated ratio for each image pixel. Since we are investigating the ratio of photoluminescence images containing information of the time dependence of the excess carriers, the doping-dependent luminescence emission has not to be corrected for the typical height-dependent doping variations. Therefore, the dynamic photoluminescence lifetime imaging technique is well suited for the investigation of bricks.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Formation image</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Imaging</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etalonnage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Calibration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Pastille électronique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Wafers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Sciage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Sawing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aserradura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Durabilité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Durability</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Durabilidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dépendance temps</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Time dependence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Recombinaison superficielle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Surface recombination</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Recombinaison porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Charge carrier recombination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Recombinación portador carga</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>7855A</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>353</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>SiliconPV 2012 International Conference on Crystalline Silicon Photovoltaics</s1>
<s2>2</s2>
<s3>Leuven BEL</s3>
<s4>2012-04-03</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001E08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0449419
   |texte=   Dynamic photoluminescence lifetime imaging of multicrystalline silicon bricks
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024